Add like
Add dislike
Add to saved papers

Partially coherent ptychography by gradient decomposition of the probe.

Coherent ptychographic imaging experiments often discard the majority of the flux from a light source to define the coherence of the illumination. Even when the coherent flux is sufficient, the stability required during an exposure is another important limiting factor. Partial coherence analysis can considerably reduce these limitations. A partially coherent illumination can often be written as the superposition of a single coherent illumination convolved with a separable translational kernel. This article proposes the gradient decomposition of the probe (GDP), a model that exploits translational kernel separability, coupling the variances of the kernel with the transverse coherence. An efficient first-order splitting algorithm (GDP-ADMM) for solving the proposed nonlinear optimization problem is described. Numerical experiments demonstrate the effectiveness of the proposed method with Gaussian and binary kernel functions in fly-scan measurements. Remarkably, GDP-ADMM using nanoprobes produces satisfactory results even when the ratio between the kernel width and the beam size is more than one, or when the distance between successive acquisitions is twice as large as the beam width.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app