JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A naphthalene diimide G-quadruplex ligand inhibits cell growth and down-regulates BCL-2 expression in an imatinib-resistant gastrointestinal cancer cell line.

Gastro-intestinal tumours (GISTs) are driven by aberrant expression of the c-KIT oncoprotein. They can be effectively treated by the kinase inhibitor imatinib, which locks the c-KIT kinase domain into an inactive conformation. However resistance to imatinib, driven by active-site mutations, is a recurrent clinical challenge, which has been only partly met by the subsequent development of second and third-generation c-KIT inhibitors. It is reported here that a tetra-substituted naphthalene diimide derivative, which is a micromolar inhibitor of cell growth in a wild-type patient-derived GIST cell line, has a sub-micromolar activity in two distinct patient-derived imatinib-resistant cell lines. The compound has been previously shown to down-regulate expression of the c-KIT protein in a wild-type GIST cell line. It does not affect c-KIT protein expression in a resistant cell line to the same extent, whereas it profoundly down-regulates the expression of the anti-apoptopic protein BCL-2. It is proposed that the mechanism of action involves targeting quadruplex nucleic acid structures, and in particular those in the BCL-2 gene and its RNA transcript. The BCL-2 protein is up-regulated in the GIST-resistant cell line, and is strongly down-regulated after treatment. The compound strongly stabilises a range of G-quadruplexes including a DNA one from the BCL-2 promoter and an RNA quadruplex from its 5'-UTR region. A reporter assay construct incorporating the 5'-UTR quadruplex sequence demonstrates down-regulation of BCL-2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app