JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Zeta potentials of the rare earth element fluorcarbonate minerals focusing on bastnäsite and parisite.

Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to bastnäsite. This is important for future processing of REE deposits, comprising of more complex REE mineralogy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app