Add like
Add dislike
Add to saved papers

CD38-cADPR-SERCA Signaling Axis Determines Skeletal Muscle Contractile Force in Response to β-Adrenergic Stimulation.

BACKGROUND/AIMS: Cyclic ADP-ribose (cADPR) is a Ca2+ -mobilization messenger that acts on ryanodine-sensitive Ca2+ channels in the sarcoplasmic reticulum (SR) Ca2+ stores. Moreover, it has been proposed that cADPR serves an additional role in activating the sarcoendoplasmic reticulum Ca2+ -ATPase (SERCA) pump. The aim of this study was to determine the exact mechanism by which cADPR regulates SR Ca2+ stores in physiologically relevant systems.

METHODS: We analyzed Ca2+ signals as well as the production of Ca2+ mobilizing messengers in the skeletal muscle cells of mice subjected to intensive exercise or in the SR fractions from skeletal muscle cells after β-adrenergic receptor (β-AR) stimulation.

RESULTS: We show that cADPR enhances SERCA activity in skeletal muscle cells in response to β-AR agonists, increasing SR Ca2+ uptake. We demonstrate that cADPR is generated by CD38, a cADPR-synthesizing enzyme, increasing muscle Ca2+ signals and contractile force during exercise. CD38 is upregulated by the cAMP response element-binding protein (CREB) transcription factor upon β-AR stimuli and exercise. CD38 knockout (KO) mice show defects in their exercise and cADPR synthesis capabilities, lacking a β-AR agonist-induced muscle contraction when compared to wild-type mice. The skeletal muscle of CD38 KO mice exhibits delayed cytosolic Ca2+ clearance and reduced SERCA activity upon exercise.

CONCLUSION: These findings provide insight into the physiological adaptive mechanism by which the CD38- cADPR-SERCA signaling axis plays an essential role in muscle contraction under exercise, and define cADPR as an endogenous activator of SERCA in enhancing the SR Ca2+ load.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app