Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Associations between structure and function are different in healthy and glaucomatous eyes.

PURPOSE: To assess if there are differences in the structure-function associations between healthy and glaucomatous eyes.

METHODS: Structure-function associations were assessed in healthy and glaucomatous eyes in three datasets, globally and in the six sectors of the optic nerve head. Structural parameters included rim area (RA) and retinal nerve fiber layer thickness (RNFLT). Functional parameters included unweighted mean of sensitivity thresholds (MS) and unweighted mean of total deviation values (MD), assessed with standard automated perimetry, short-wavelength automated perimetry, frequency-doubling technology perimetry, or contrast sensitivity perimetry. All structural and functional parameters were expressed as percent of mean normal. SF associations were assessed with correlation analyses (Pearson, Spearman and Kendall). We also assessed the SF associations with linear regression analyses: the generalized estimating equation (GEE) was used to adjust for inter-eye correlations and ordinary least squares (OLS) linear models were used when these adjustments were not necessary. We applied Bonferroni corrections to adjust for the impact of multiple comparisons.

RESULTS: Overall, none of the Pearson correlations tested in healthy eyes were significant (correlations ranged from -0.17 to 0.37), whereas 77% of the correlations tested in glaucomatous eyes were significant (correlations ranged from 0.01 to 0.79). Similarly, none of the slopes obtained with GEE and OLS were significant in healthy eyes (slopes ranged from -0.30 to 0.87), whereas 82% of the slopes obtained in glaucomatous eyes were significant (slopes ranged from 0.02 to 1.38).

CONCLUSIONS: Significant associations between structure and function were consistently observed in glaucomatous eyes, but not in healthy eyes. These differences in association should be considered in the design of structure-function models for progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app