Add like
Add dislike
Add to saved papers

Interleukin-22 (IL-22) Regulates Apoptosis of Paclitaxel-Resistant Non-Small Cell Lung Cancer Cells Through C-Jun N-Terminal Kinase Signaling Pathway.

BACKGROUND Reducing drug resistance in tumor cells has become an important issue for cancer treatment. The purpose of this study was to investigate whether IL-22 was involved in lung cancer cell resistance to paclitaxel (PTX), and to explore the underlying molecular mechanism. MATERIAL AND METHODS Non-small cell lung cancer (NSCLC) cell line A549 and the drug resistant cell line A549/PTX were used in the present study. The inhibitory rate of PTX on A549 and A549/PTX cell proliferation was determined by MTT assay and the half-maximal inhibitory concentration (IC50) value was calculated. The expression level of IL-22 was detected using Western blot and qRT-PCR. To elucidate the mechanism by which IL-22 is involved in PTX resistance, a stable IL-22-silenced A549/PTX cell line was generated by using IL-22-siRNA. Cell apoptosis was analyzed by flow cytometry, and the c-Jun N-terminal kinase (JNK) signal pathway was determined using Western blot analysis. RESULTS We found that IL-22 expression level was markedly higher in A549/PTX cells than in A549 cells, and IL-22 gene knockdown significantly enhanced the cell proliferation inhibition rate of PTX to A549/PTX cells and decreased the IC50 value of PTX to A549/PTX cells, indicating IL-22 was involved in cell PTX resistance. Our findings also suggest that IL-22 knockdown notably increased PTX induced apoptosis in A549/PTX cells. Moreover, the results showed that p-JNK and Caspase 3 expression were significantly increased in IL-22 knockdown A549/PTX cells, while Bcl-2 expression was significantly decreased. CONCLUSIONS IL-22 is involved in A549 cell resistance to PTX through regulating cell apoptosis via the JNK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app