Add like
Add dislike
Add to saved papers

Evaluation of the losartan solubility in the biowaiver context by shake-flask method and intrinsic dissolution.

This study aimed at evaluating the shake-flask use as a universal method to evaluate drug solubility in a biowaiver context as proposed by FDA, EMA and ANVISA. The solubility of losartan was determined in three buffers using the shake-flask method, intrinsic dissolution (ID) and Quantum Chemistry. Moreover, the evaluation of a losartan dissolution profile from coated tablets was conducted. The losartan low solubility in pH 1.2 and high solubility in pH 6.8 were observed using the shake-flask method. However, the solubility results using ID demonstrated its high solubility in pH 1.2 and 6.8. It was not possible to find conclusive results regarding the solubility of the drug in pH 4.5. The studies conducted by Quantum Chemistry provide molecular and electronic data that helped understand the losartan solvation in different pH values. Our experimental results defined that losartan can be classified as a low-solubility drug. In addition, this work shows that shake-flask cannot be a universal method of solubility studies in biowaiver context. Individual analysis will be necessary. The intrinsic dissolution should be considered as a complementary method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app