Add like
Add dislike
Add to saved papers

Assembly of Hollow Carbon Nanospheres on Graphene Nanosheets and Creation of Iron-Nitrogen-Doped Porous Carbon for Oxygen Reduction.

ACS Nano 2018 May 23
Triblock copolymer micelles coated with melamine-formaldehyde resin were self-assembled into closely packed two-dimensional (2D) arrangements on the surface of graphene oxide sheets. Carbonizing these structures created a 2D architecture composed of reduced graphene oxide (rGO) sandwiched between two monolayers of sub-40 nm diameter hollow nitrogen-doped carbon nanospheres (N-HCNS). Electrochemical tests showed that these hybrid structures had better performance for oxygen reduction compared to physically mixed rGO and N-HCNS that were not chemically bonded together. Further impregnation of the sandwich structures with iron (Fe) species followed by carbonization yielded Fe1.6 -N-HCNS/rGO-900 with a high specific surface area (968.3 m2 g-1 ), a high nitrogen doping (6.5 at%), and uniformly distributed Fe dopant (1.6 wt %). X-ray absorption fine structure analyses showed that most of the Fe in the nitrogen-doped carbon framework is composed of single Fe atoms each coordinated to four N atoms. The best Fe1.6 -N-HCNS/rGO-900 catalyst performed better in electrocatalytic oxygen reduction than 20 wt % Pt/C catalyst in alkaline medium, with a more positive half-wave potential of 0.872 V and the same limiting current density. Bottom-up soft-patterning of regular carbon arrays on free-standing 2D surfaces should enable conductive carbon supports that boost the performance of electrocatalytic active sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app