Add like
Add dislike
Add to saved papers

Natural Triterpenoid-Tailored Phosphate: In Situ Reduction of Heavy Metals Spontaneously to Generate Electrochemical Hybrid Gels.

In this work, we reported a biocompatible nature product-based soft material which could convert heavy metals to nanoparticles (NPs) in situ spontaneously in a simple step. We have designed and synthesized a natural triterpenoid-tailored phosphate (methyl glycyrrhetate phosphate (MGP)), and this amphiphilic MGP could form the stable hydrogel and extract gold salt from water, followed by spontaneous in situ AuNP formation without external reductants. Notably, the AuNPs were mainly localized on nanofibers instead of gel cavities, and the resulting MGP-AuNPs hybrid gel exhibited attractive electrocatalytic and conductive properties. In addition, as an efficient leaching extraction agent, MGP hydrogel showed higher affinity toward heavy metals over other common metals on account of the high reduction potential of heavy metals. Our work not only provides a novel yet simple way in generating electrochemical hybrid gels by in situ reduction of heavy metals spontaneously but also expands the application of nature product-based functional materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app