Add like
Add dislike
Add to saved papers

Polyhistidine-Based Metal Coordination Hydrogels with Physiologically Relevant pH Responsiveness and Enhanced Stability through a Novel Synthesis.

Utilizing the abnormal physiological conditions of disease tissues can result in a site-specific functionality with high control and efficiency of stimuli-responsive hydrogels. Here, a physiologically relevant pH-responsive and self-healing hydrogel is reported based on coordination between Ni2+ and four-arm poly(ethylene glycol)-b-polyhistidine (4PEG-PHis) that is synthesized by a novel and facile PHis preparation method using amino-terminalized four-arm PEG as the macroinitiator. Reversible PHisNi coordination bonds endow the hydrogel with multistimuli-triggered sol-gel transition (physiologically relevant pH, EDTA) and self-healing properties. It is also demonstrated that 4PEG-PHis could be used as an injectable hydrogel in phosphate buffer (pH 7.4), and excellent stability in neutral buffer via multivalent coordination is shown, thus indicating its potential applications in controlled drug release systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app