Add like
Add dislike
Add to saved papers

Combined electrochemiluminescent and electrochemical immunoassay for interleukin 6 based on the use of TiO 2 mesocrystal nanoarchitectures.

A dual-responsive sandwich-type immunosensor is described for the detection of interleukin 6 (IL-6) by combining electrochemiluminescent (ECL) and electrochemical (EC) detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures. A composite was prepared from TiO2 (anatase) mesocages (AMCs) and a carboxy-terminated ionic liquid (CTIL) and then placed on a glassy carbon electrode (GCE). In the next step, the ECL probe Ru(bpy)3 (II) and antibody against IL-6 (Ab1 ) were immobilized on the GCE. Octahedral anatase TiO2 mesocrystals (OAMs) served as the matrix for immobilizing acid phosphatase (ACP) and secondary antibody (Ab2 ) labeled with horseradish peroxidase (HRP) to form a bioconjugate of type Ab2 -HRP/ACP/OAMs. It was self-assembled on the GCE by immunobinding. 1-Naphthol, which is produced in-situ on the surface of the GCE due to the hydrolysis of added 1-naphthyl phosphate by ACP, is oxidized by HRP in the presence of added H2 O2 . This results in an electrochemical signal (typically measured at 0.4 V vs. Ag/AgCl) that increases linearly in the 10 fg·mL-1 to 90 ng·mL-1 IL-6 concentration range with a detection limit of 0.32 fg·mL-1 . Secondly, the oxidation product of 1-naphthol quenches the ECL emission of Ru(bpy)3 2+ . This leads to a decrease in ECL intensity which is linear in the 10 ag·mL-1 to 90 ng·mL-1 concentration range, with a detection limit of 3.5 ag·mL-1 . The method exhibits satisfying selectivity and good reproducibility which demonstrates its potential in clinical testing and diagnosis. Graphical abstract A dual-responsive sandwich-type immunosensor was fabricated for the detection of interleukin 6 by combining electrochemiluminescence and electrochemical detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app