Add like
Add dislike
Add to saved papers

Inhibition of IRES-dependent translation of caspase-2 by HuR confers chemotherapeutic drug resistance in colon carcinoma cells.

Oncotarget 2018 April 7
HuR plays an important role in tumor cell survival mainly through posttranscriptional upregulation of prominent anti-apoptotic genes. In addition, HuR can inhibit the translation of pro-apoptotic factors as we could previously report for caspase-2. Here, we investigated the mechanisms of caspase-2 suppression by HuR and its contribution to chemotherapeutic drug resistance of colon carcinoma cells. In accordance with the significant drug-induced increase in cytoplasmic HuR abundance, doxorubicin and paclitaxel increased the interaction of cytoplasmic HuR with the 5'untranslated region (5'UTR) of caspase-2 as shown by RNA pull down assay. Experiments with bicistronic reporter genes furthermore indicate the presence of an internal ribosome entry site (IRES) within the caspase-2-5'UTR. Luciferase activity was suppressed either by chemotherapeutic drugs or ectopic expression of HuR. IRES-driven luciferase activity was significantly increased upon siRNA-mediated knockdown of HuR implicating an inhibitory effect of HuR on caspase-2 translation which is further reinforced by chemotherapeutic drugs. Comparison of RNA-binding affinities of recombinant HuR to two fragments of the caspase-2-5'UTR by EMSA revealed a critical HuR-binding site residing between nucleotides 111 and 241 of caspase-2-5'UTR. Mapping of critical RNA binding domains within HuR revealed that a fusion of RNA recognition motif 2 (RRM2) plus the hinge region confers a full caspase-2-5'UTR-binding. Functionally, knockdown of HuR significantly increased the sensitivity of colon cancer cells to drug-induced apoptosis. Importantly, the apoptosis sensitizing effects by HuR knockdown were rescued after silencing of caspase-2. The negative caspase-2 regulation by HuR offers a novel therapeutic target for sensitizing colon carcinoma cells to drug-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app