Add like
Add dislike
Add to saved papers

Conformational Ensemble and Biological Role of the TCTP Intrinsically Disordered Region: Influence of Calcium and Phosphorylation.

The translationally controlled tumor protein (TCTP) is a multifunctional protein that may interact with many other biomolecules, including itself. The experimental determinations of TCTP structure revealed a folded core domain and an intrinsically disordered region, which includes the first highly conserved TCTP signature, but whose role in the protein functions remains to be elucidated. In this work, we combined NMR experiments and MD simulations to characterize the conformational ensemble of the TCTP intrinsically disordered loop, in the presence or not of calcium ions and with or without the phosphorylation of Ser46 and Ser64. Our results show that these changes in the TCTP electrostatic conditions induce significant shifts of its conformational ensemble toward structures more or less extended in which the disordered loop is pulled away or folded against the core domain. Particularly, these conditions impact the transient contacts between the two highly conserved signatures of the protein. Moreover, both experimental and theoretical data show that the interface of the non-covalent TCTP dimerization involves its second signature which suggests that this region might be involved in protein-protein interaction. We also show that calcium hampers the formation of TCTP dimers, likely by favoring the competitive binding of the disordered loop to the dimerization interface. All together, we propose that the TCTP intrinsically disordered region is involved in remodeling the core domain surface to modulate its accessibility to its partners in response to a variety of cellular conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app