Add like
Add dislike
Add to saved papers

Molecular and eco-physiological characterization of arsenic (As)-transforming Achromobacter sp. KAs 3-5 T from As-contaminated groundwater of West Bengal, India.

Molecular and eco-physiological characterization of arsenic (As)-transforming and hydrocarbon-utilizing Achromobacter type strain KAs 3-5T has been investigated in order to gain an insight into As-geomicrobiology in the contaminated groundwater. The bacterium is isolated from As-rich groundwater of West Bengal, India. Comparative 16S rRNA gene sequence phylogenetic analysis confirmed that the strain KAs 3-5T is closely related to Achromobacter mucicolens LMG 26685T (99.17%) and Achromobacter animicus LMG 26690T (99.17%), thus affiliated to the genus Achromobacter. Strain KAs 3-5T is nonflagellated, mesophilic, facultative anaerobe, having a broad metabolic repertoire of using various sugars, sugar-/fatty acids, hydrocarbons as principal carbon substrates, and O2 , NO3 - , NO2 - , and Fe3+ as terminal electron acceptors. Growth with hydrocarbons led to cellular aggregation and adherence of the cells to the hydrocarbon particles confirmed through electron microscopic observations. The strain KAs 3-5T showed high As resistance (MIC of 5 mM for As3+ , 25 mM for As5+ ) and reductive transformation of As5+ under aerobic conditions while utilizing both sugars and hydrocarbons. Molecular taxonomy specified a high genomic GC content (65.5 mol %), ubiquinone 8 (UQ-8) as respiratory quinone, spermidine as predominant polyamine in the bacterium. The differential presence of C12:0 , C14:0 2-OH, C18:1 ω7c, and C 14:0 iso 3-OH/ C16:1 iso fatty acids, phosphatidylglycerol (PG), phosphatidylcholine (PC), two unknown phospholipid (PL1, PL2) as polar lipids, low DNA-DNA relatedness (33.0-41.0%) with the Achromobacter members, and unique metabolic capacities clearly indicated the distinct genomic and physiological properties of strain KAs 3-5T among known species of the genus Achromobacter. These findings lead to improve our understanding on metabolic flexibility of bacteria residing in As-contaminated groundwater and As-bacteria interactions within oligotrophic aquifer system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app