Add like
Add dislike
Add to saved papers

Er 3+ Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing.

Angewandte Chemie 2018 June 19
Fluorescent bioimaging in the second near-infrared window (NIR-II) can probe deep tissue with minimum auto-fluorescence and tissue scattering. However, current NIR-II fluorophore-related biodetection in vivo is only focused on direct disease lesion or organ bioimaging, it is still a challenge to realize NIR-II real-time dynamic biosensing. A new type of Er3+ sensitized upconversion nanoparticles are presented with both excitation (1530 nm) and emission (1180 nm) located in the NIR-II window for in vivo biosensing. The microneedle patch sensor for in vivo inflammation dynamic detection is developed based on the ratiometric fluorescence by combining the effective NIR-II upconversion emission and H2 O2 sensing organic probes under the Fenton catalysis of Fe2+ . Owing to the large anti-Stokes shifting, low auto-fluorescence, and tissue scattering of the NIR-II upconversion luminescence, inflammation can be dynamically evaluated in vivo at very high resolution (200×200 μm).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app