Add like
Add dislike
Add to saved papers

Effect of single-walled carbon nanotubes on cytochrome P450 activity in human liver microsomes in vitro.

Single-walled carbon nanotubes (SWCNTs) are made from a rolled single sheet of graphene with a diameter in the nanometer range. SWCNTs are potential carriers for drug delivery systems because antibodies or drugs can be loaded on their surface; however, their effect on the activities of cytochrome P450 (CYP) remains unclear. The aim of this study was to investigate the effect of two kinds of SWCNTs with different lengths (FH-P- and SO-SWCNTs) on human CYP activity. In addition, other nano-sized carbon materials, such as carbon black, fullerene-C60 , and fullerene-C70 were also evaluated to compare their effects on CYP activities. Ten CYP substrates (phenacetin, coumarin, bupropion, paclitaxel, tolbutamide, S-mephenytoin, dextromethorphan, chlorzoxazone, midazolam, and testosterone) were used. Testosterone 6β-hydroxylation and midazolam 1'-hydroxylation, which are catalysed by both CYP3A4 and CYP3A5 in liver microsomes, were decreased by 25% and 45%, respectively, in the presence of 0.1 mg/ml SO-SWCNT. Dextromethorphan O-demethylation, which is catalysed mainly by CYP2D6, was decreased by 40% in the presence of SO-SWCNT. Other CYP activities, however, were not attenuated by SO-SWCNT. FH-P-SWCNT, carbon black, fullerene-C60 , and fullerene-C70 at 0.1 mg/ml had no effect on CYP activities. The Ki values for testosterone 6β-hydroxylation, midazolam 1'-hydroxylation, and dextromethorphan O-demethylation in liver microsomes were 136, 34, and 56 μg/ml, respectively. SO-SWCNT was determined to be a competitive inhibitor of CYP3A4, CYP3A5, and CYP2D6. These results suggest that the effect of SO-SWCNT differs among CYP isoforms, and that the inhibition potency depends on the physicochemical properties of the nanocarbons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app