JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of ex vivo perfusion on the biomolecular profile of rat lungs.

Despite increasing clinical adoption, biologic influences of ex vivo lung perfusion (EVLP) remain insufficiently elucidated. The aim of the current study was to investigate biomolecular changes induced by EVLP in rat lungs. EVLP was maintained for 180 min. Hyaluronan, mediators, and cells were assessed in the perfusate. Gene expression, signaling pathways, and ATP content were investigated in lung tissue. EVLP induced the release of medium-high molecular weight hyaluronan and transcription of hyaluronan synthases ( P < 0.001). Increasing concentrations of inflammatory mediators were detected in the perfusate ( P < 0.001). Perfused lungs exhibited a distinctive transcriptional signature compared with organs examined before or after surgery/procurement ( P = 0.003). Up-regulated genes were involved in inflammation and its regulation, apoptosis/survival, heat shock, and oxidative stress response ( q = 0). Down-regulated genes were related to lymphocyte function ( q = 0). The NF-κB, signal transducer and activator of transcription 3, ERK1/2, p38, Akt, and stress-activated protein kinase/JNK signaling pathways were modulated by EVLP ( P < 0.05). Most of these biomolecular changes were examined and confirmed in additional experiments that were performed in lungs procured from donation after cardiocirculatory death after 180 min of warm ischemia. The current study demonstrates that EVLP broadly affects the lung biomolecular phenotype. These findings improve our comprehension of the effects exerted by the procedure and encourage additional research in preclinical models to implement therapeutic interventions.-Lonati, C., Bassani, G. A., Brambilla, D., Leonardi, P., Carlin, A., Faversani, A., Gatti, S., Valenza, F. Influence of ex vivo perfusion on the biomolecular profile of rat lungs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app