Add like
Add dislike
Add to saved papers

TiO 2 -MnO x -Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO 2 -Reduction Activity.

Photocatalytic CO2 conversion into solar fuels has an alluring prospect. However, the rapid recombination of photogenerated electron-hole pairs for TiO2 -based photocatalyst hinders its wide application. To alleviate this bottleneck, a ternary hybrid TiO2 -MnO x -Pt composite is excogitated. Taking advantage of the surface junction between {001} and {101} facets, MnO x nanosheets and Pt nanoparticles are selectively deposited on each facet by a facile photodeposition method. This design accomplishes the formation of two heterojunctions: p-n junction between MnO x and TiO2 {001} facet and metal-semiconductor junction between Pt and TiO2 {101} facet. Both of them, together with the surface heterojunction between {001} and {101} facets, are contributive to the spatial separation of the photogenerated electron-hole pairs. Thanks to their cooperative and synergistic effect, the as-prepared composite photocatalyst exhibits a promoted yield of CH4 and CH3 OH, which is over threefold of pristine TiO2 nanosheets films. The conjecture of the mechanism that selective formation of multijunction structure maximizes the separation and transfer efficiency of photogenerated charge carriers is proved by the photoelectrochemical analysis. This work not only successfully achieves an efficient multijunction photocatalyst by ingenious design but also provides insight into the mechanism of the performance enhancement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app