Add like
Add dislike
Add to saved papers

Greater Early Bactericidal Activity at Higher Rifampicin Doses Revealed by Modeling and Clinical Trial Simulations.

Background: The currently recommended rifampicin dose (10 mg/kg) for treating tuberculosis is suboptimal. The PanACEA HIGHRIF1 trial evaluated the pharmacokinetics and early bactericidal activity of rifampicin doses of up to 40 mg/kg. Conventional statistical analyses revealed no significant exposure-response relationship. Our objectives were to explore the exposure-response relationship for high-dose rifampicin by using pharmacokinetic-pharmacodynamic modeling and to predict the early bactericidal activity of 50 mg/kg rifampicin.

Methods: Data included time to Mycobacterium tuberculosis positivity of liquid cultures of sputum specimens from 83 patients with tuberculosis who were treated with 10 mg/kg rifampicin (n = 8; reference arm) or 20, 25, 30, 35, or 40 mg/kg rifampicin (n = 15/arm) for 7 days. We used a semimechanistic time-to-event approach to model the time-to-positivity data. Rifampicin exposure and baseline time to culture positivity were explored as covariates.

Results: The baseline time to culture positivity was a significant covariate on the predicted initial bacterial load, and rifampicin exposure was a significant covariate on the bacterial kill rate in sputum resulting in increased early bactericidal activity. The 90% prediction interval for the predicted median day 7 increase in time to positivity for 50 mg/kg rifampicin was 7.25-10.3 days.

Conclusions: A significant exposure-response relationship was found between rifampicin exposure and early bactericidal activity. Clinical trial simulations showed greater early bactericidal activity for 50 mg/kg rifampicin.

Clinical Trials Registration: NCT01392911.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app