Add like
Add dislike
Add to saved papers

Quantification of Carbon Nanotubes by Raman Analysis.

The increasing prevalence of carbon nanotubes (CNTs) in manufacturing and research environments, together with the potential exposure risks, necessitates development of reliable and accurate monitoring methods for these materials. We examined quantification of CNTs by two distinct methods based on Raman spectroscopy. First, as measured by the Raman peak intensity of aqueous CNT suspensions, and second, by Raman mapping of air filter surfaces onto which CNTs were collected as aerosols or applied as small-area (0.05 cm2) deposits. Correlation (R2 = 0.97) between CNT concentration and Raman scattering intensity for suspensions in cuvettes was found over a concentration range from about 2 to 10 µg/ml, but measurement variance precludes practical determination of a calibration curve. Raman mapping of aerosol sample filter surfaces shows correlation with CNT mass when the surface density is relatively high (R2 = 0.83 and 0.95 above about 5 µg total mass on filter), while heterogeneity of CNT deposition makes obtaining representative maps of lower density samples difficult. This difficulty can be mitigated by increasing the area mapped relative to the total sample area, improving both precision and the limit of detection (LOD). For small-area deposits, detection of low masses relevant to occupational monitoring can be achieved, with an estimated LOD of about 50 ng.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app