Add like
Add dislike
Add to saved papers

Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype.

Interplay between cancer epithelial cells and the surrounding immune cells shape the tumor microenvironment to promote cancer progression. Tumor-associated macrophages are well recognized for their roles in cancer progression. Accumulating evidence also indicates implication of Rab small GTPase-mediated exocytosis in tumorigenesis. However, the mechanism for Rab-mediated exocytosis in regulation of macrophage polarization is not clear. We have previously identified Rab37 as a metastasis suppressor in lung cancer. In our study, we identified a novel Rab37 trafficking cargo soluble ST2 (sST2), which skewed macrophage polarization toward anti-tumoral M1-like phenotype in vitro. We further demonstrated that Rab37-mediated sST2 secretion significantly increased the ratio of M1 vs. M2 in xenografts and thus reduced tumor growth. Moreover, lung cancer patients with low Rab37, low sST2 and low ratio of M1 vs. M2 macrophages expression profile correlated with worse overall survival examined by Kaplan-Meier survival analysis. Multivariate Cox regression analysis showed that this Rab37-sST2-M1/M2 expression profile predicted poor prognosis. Our findings reveal a novel regulation of cancerous Rab37 in microenvironmental macrophages polarization, which preferentially shifts to anti-tumoral phenotype and thereby suppresses lung tumor growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app