Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnetic nanoparticle formulation for targeted delivery of chemotherapeutic irinotecan to lungs.

Lung cancer is the single largest cause of cancer related deaths in the world. Current treatments include surgery, radiation therapy, chemotherapy using cytotoxic drugs, and monoclonal antibodies. Such treatments have limited efficacy due to diverse nature of lung cells involved and lack of tissue penetration. Cytotoxic drugs, while potent, have the enormous drawback of limited entry into the lung selectively, thus causing collateral damage to other tissues. To overcome these shortcomings, we report here the development of new magnetic irinotecan containing nanoparticles (NPs), which target the lung over other tissues by over 5-fold. Selective targeting of lungs is achieved by deliberately incorporating a facilitated transport mechanism into the NPs. The iron containing NPs can be further exploited to retain the drug into the lung for maximum efficacy using an external magnet. This irinotecan nanoformulation can be used as mono therapy or combination therapy and offers a cost-effective and efficacious therapy for lung cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app