Add like
Add dislike
Add to saved papers

Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

BACKGROUND: Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model.

METHODS: Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose (18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (FI O2  = .209) and hypoxic gas (FI O2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner.

RESULTS: Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress.

CONCLUSION: PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app