Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ganetespib targets multiple levels of the receptor tyrosine kinase signaling cascade and preferentially inhibits ErbB2-overexpressing breast cancer cells.

Although ErbB2-targeted therapeutics have significantly improved ErbB2+ breast cancer patient outcomes, therapeutic resistance remains a significant challenge. Therefore, the development of novel ErbB2-targeting strategies is necessary. Importantly, ErbB2 is a sensitive client protein of heat shock protein 90 (HSP90), which regulates client protein folding, maturation, and stabilization. HSP90 inhibition provides an alternative therapeutic strategy for ErbB2-targeted degradation. In particular, ganetespib, a novel HSP90 inhibitor, is a promising agent for ErbB2+ cancers. Nevertheless, the anti-cancer efficacy and clinical application of ganetespib for ErbB2+ breast cancer is largely unknown. In our study, we examined the anti-cancer effects of ganetespib on ErbB2+ BT474 and SKBR3 breast cancer cells, and isogenic paired cancer cell lines with lentivirus-mediated ErbB2 overexpression. Ganetespib potently inhibited cell proliferation, cell cycle progression, survival, and activation/phosphorylation of ErbB2 and key downstream effectors in ErbB2+ breast cancer cells. Moreover, ganetespib decreased the total protein levels of HSP90 client proteins and reduced ErbB2 protein half-life. ErbB2-overexpressing cancer cells were also more sensitive to ganetespib-mediated growth inhibition than parental cells. Ganetespib also strikingly potentiated the inhibitory effects of lapatinib in BT474 and SKBR3 cells. Ultimately, our results support the application of ganetespib-mediated HSP90 inhibition as a promising therapeutic strategy for ErbB2+ breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app