Add like
Add dislike
Add to saved papers

Elevated expression of human bHLH factor ATOH7 accelerates cell cycle progression of progenitors and enhances production of avian retinal ganglion cells.

The production of vertebrate retinal projection neurons, retinal ganglion cells (RGCs), is regulated by cell-intrinsic determinants and cell-to-cell signaling events. The basic-helix-loop-helix (bHLH) protein Atoh7 is a key neurogenic transcription factor required for RGC development. Here, we investigate whether manipulating human ATOH7 expression among uncommitted progenitors can promote RGC fate specification and thus be used as a strategy to enhance RGC genesis. Using the chicken retina as a model, we show that cell autonomous expression of ATOH7 is sufficient to induce precocious RGC formation and expansion of the neurogenic territory. ATOH7 overexpression among neurogenic progenitors significantly enhances RGC production at the expense of reducing the progenitor pool. Furthermore, forced expression of ATOH7 leads to a minor increase of cone photoreceptors. We provide evidence that elevating ATOH7 levels accelerates cell cycle progression from S to M phase and promotes cell cycle exit. We also show that ATOH7-induced ectopic RGCs often exhibit aberrant axonal projection patterns and are correlated with increased cell death during the period of retinotectal connections. These results demonstrate the high potency of human ATOH7 in promoting early retinogenesis and specifying the RGC differentiation program, thus providing insight for manipulating RGC production from stem cell-derived retinal organoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app