Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased Reticulon 3 (RTN3) Leads to Obesity and Hypertriglyceridemia by Interacting With Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5).

Circulation 2018 October 24
BACKGROUND: Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play a role in neurodegenerative diseases, but little is known about its role in lipid metabolism.

METHODS: Obese patients (n=149), hypertriglyceridemic patients (n=343), and healthy control subjects (n=84) were enrolled to assess their levels of RTN3. To explore the pathophysiological roles of RTN3 in the control of lipid metabolism, we used transgenic mice overexpressing the wild-type human RTN3 gene, the RTN3-null transgenic mouse model, and multiple Caenorhabditis legans strains for molecular characterization. The underlying mechanisms were studied with 3T3L1 cell cultures in vitro.

RESULTS: We report that overexpressed RTN3 in mice induces obesity and higher accumulation of triglycerides. Increased RTN3 expression is also found in patients with obesity and hypertriglyceridemia. We reveal that RTN3 plays critical roles in regulating the biosynthesis and storage of triglycerides and in controlling lipid droplet expansion. Mechanistically, RTN3 regulates these events through its interactions with heat shock protein family A (Hsp70) member 5, and this enhanced interaction increases sterol regulatory element-binding protein 1c and AMP-activated kinase activity.

CONCLUSIONS: This study provides evidence for a role of RTN3 in inducing obesity and triglyceride accumulation and suggests that inhibiting the expression of RTN3 in fat tissue may be a novel therapeutic approach to treat obesity and hypertriglyceridemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app