Add like
Add dislike
Add to saved papers

Load-Dependent Changes in Left Ventricular Structure and Function in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure.

BACKGROUND: To better understand reverse left ventricular (LV) remodeling, we developed a murine model wherein mice develop LV remodeling after transverse aortic constriction (TAC) and a small apical myocardial infarct (MI) and undergo reverse LV remodeling after removal of the aortic band.

METHODS AND RESULTS: Mice studied were subjected to sham (n=6) surgery or TAC+MI (n=12). Two weeks post-TAC+MI, 1 group underwent debanding (referred to as heart failure debanding [HF-DB] mice; n=6), whereas the aortic band remained in a second group (heart failure [HF] group; n=6). LV remodeling was evaluated by 2D echocardiography at 1 day, 2 weeks and 6 weeks post-TAC+MI. The hearts were analyzed by transcriptional profiling at 4 and 6 weeks and histologically at 6 weeks. Debanding normalized LV volumes, LV mass, and cardiac myocyte hypertrophy at 6 weeks in HF-DB mice, with no difference in myofibrillar collagen in the HF and HF-DB mice. LV ejection fraction and radial strain improved after debanding; however, both remained decreased in the HF-DB mice relative to sham and were not different from HF mice at 6 weeks. Hemodynamic unloading in the HF-DB mice was accompanied by a 35% normalization of the HF genes at 2 weeks and 80% of the HF genes at 4 weeks.

CONCLUSIONS: Hemodynamic unloading of a pathophysiologically relevant mouse model of HF results in normalization of LV structure, incomplete recovery of LV function, and incomplete reversal of the HF transcriptional program. The HF-DB mouse model may provide novel insights into mechanisms of reverse LV remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app