Add like
Add dislike
Add to saved papers

Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy.

The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1 Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1 (21 Ag ) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11 Bu and 21 Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2 (11 Bu ) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1 Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app