Add like
Add dislike
Add to saved papers

Fourier-based solving approach for the transport-of-intensity equation with reduced restrictions.

Optics Express 2018 April 31
The transport-of-intensity equation (TIE) has been proven as a standard approach for phase retrieval. Some high efficiency solving methods for the TIE, extensively used in many works, is based on a Fourier transform (FT). However, several assumptions have to be made to solve the TIE by these methods. A common assumption is that there are no zero values for the intensity distribution allowed. The two most widespread Fourier-based approaches have further restrictions. One of these requires the uniformity of the intensity distribution and the other assumes the parallelism of the intensity and phase gradients. In this paper, we present an approach, which does not need any of these assumptions and consequently extends the application domain of the TIE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app