Add like
Add dislike
Add to saved papers

Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface.

Optics Express 2018 April 17
Metasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.1/nm. For different types of adsorbate layers with the same thickness of 8 nm, its surface sensitivity and figure of merit are respectively 32.3 and 3.2/RIU. The enhanced electric field is concentrated on top of dielectric patch ends and in the patch ends simultaneously. Results show that the presented structure has high surface (and bulk) sensing capability in sensing applications due to its narrow linewidth and deep modulation depth. This could pave a new route toward dielectric-metal metasurface in biosensing applications, such as early disease detections and designs of neural stem cell sensing platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app