Add like
Add dislike
Add to saved papers

Defining cylindrical space optical resonators through supported mode properties: inverse numerical process.

Optics Express 2018 April 17
Faraday's and Ampere's laws are converted to matrix operator form and rearranged such that the unknown relative permittivity and relative permeability tensors can be determined. The material and geometry of cylindrically symmetric optical resonator structures are determined through the electric and magnetic field component profiles and complex angular frequency of a proposed localized state. This differs from the usual utilization of the electromagnetic wave equations, solving for states given the material properties and geometry. Thus the technique presented here is an inverse numerical process. The theoretical expressions are provided based on a Fourier-Bessel numerical approach which is highly suitable for cylindrical geometry resonators. Without loss of the generality of the technique, examples of resonant structure determination are presented for non-magnetic and diagonal relative permittivity tensor. Axial field propagation is included to demonstrate the design capabilities related to optical fiber and photonic crystal fiber structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app