Add like
Add dislike
Add to saved papers

A freshwater diatom challenged by Zn: Biochemical, physiological and metabolomic responses of Tabellaria flocculosa(Roth) Kützing.

Freshwater ecosystems are under threatening anthropogenic pressures worldwide, namely by metals. Diatoms are used as water quality indicators, but the influence of micronutrients such as Zn and its impacts are poorly understood. Thus, our study aimed to elucidate the tolerance level, the cellular targets and the responses to counteract Zn toxicity of freshwater diatoms by exposing Tabellaria flocculosa, isolated from a Zn contaminated stream. Biochemical, physiological and metabolomic approaches were used. It was demonstrated that Zn is toxic to T. flocculosa at concentrations occurring in contaminated environments. At low stress (30 μg Zn/L) few alterations in the metabolome were observed, but the enzymatic (SOD, CAT) and molecular (GSH, GSSG) antioxidant systems were induced, protecting cells from oxidative stress. At moderate stress (500 μg Zn/L) the main changes occurred in the metabolome (increases in fatty acids, amino acids, terpenoids, glycerol and phosphate, decreases in sucrose and lumichrome) with a moderate increase in cell damage (LPO and PC). The concerted action of all these mechanisms resulted in a non-significant decrease of growth, explaining the survival of this T. flocculosa strain in an environment with this Zn concentration. At the highest stress level (1000 μg Zn/L) the metabolome was identical to 500 μg Zn/L, and the induction of antioxidant systems and extracellular ion chelation (exopolysaccharides, frustulins) were the main responses to the increase of Zn toxicity. However, these mechanisms were unable to effectively abrogate cellular damage and growth reduction was observed. Moreover, the decrease in sucrose and especially in lumichrome should be tested as new specific markers of Zn toxicity. The information obtained in this study can assist in environmental risk assessment policies, support the prediction of diatom behaviour in highly impacted Zn environments, such as mining scenarios, and may help develop new indices, which include alterations induced by metals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app