Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition.

Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. In this study, the transcriptome of peanut and maize roots was analyzed by suppression subtractive hybridization (SSH) and microarray analysis separately. We constructed four SSH libraries using the cDNA of peanut roots based on two cropping patterns: monocropping and intercropping, and two growth stages: vegetative stage and reproductive stage. Lib M1, I1, M2 and I2 comprised 53, 51, 37 and 54 genes, respectively. Six and four transporters were found in the two intercropping-specific SSH libraries, which may facilitate Fe acquisition and protoplasmic homeostasis of metal ions and anions. Specifically, AhNARMP1 and MTP may play a role in boosting Fe nutrition during the vegetative stage. The expression of MYC2 was also upregulated by intercropping, while an ethylene-responsive transcription factor was downregulated during two growth periods. Microarrays indicated that homocysteine S-methyltransferase and serine acetyltransferase 1 upregulated in intercropped maize roots, which directly associated with methionine biosynthesis. It may account for the enhanced phytosiderophore released capacity in intercropping, which benefited the Fe nutrition of intercropped peanut in reproductive stage. Two aminocyclopropane-1-carboxylic acid synthase oxidase genes, which are related to ethylene biosynthesis, were downregulated in maize root by intercropping. Taken together with our previous proteomic work, the results indicated that intercropping enhances jasmonate signaling and weakens ethylene signaling in peanut and maize roots, which may improve ecological adaptation of the peanut plant to intercropping systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app