Add like
Add dislike
Add to saved papers

Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues.

Biomaterials 2018 July
Native and engineered tissue development are regulated by the integrative effects of multiple microenvironmental stimuli. Microfabricated bioreactor array platforms can efficiently dissect cue-response networks, and have recently integrated critical 2D and 3D mechanical stimulation for greater physiological relevance. However, a limitation of these approaches is that assessment of tissue functional properties is typically limited to end-point analyses. Here we report a new deformable membrane platform with integrated strain sensors that enables mechanical stretching or compression of 3D cell-hydrogel arrays and simultaneous measurement of hydrogel construct stiffness in situ. We tested the ability of the integrated strain sensors to measure the evolution of the stiffness of cell-hydrogel constructs for two cases. First, we demonstrated in situ stiffness monitoring of degradable poly (ethylene glycol)-norbornene (PEG-NB) hydrogels embedded with mesenchymal stromal cells (MSCs) and cultured with or without cyclic tensile stimulation for up to 15 days. Whereas statically-cultured hydrogels degraded and softened throughout the culture period, mechanically-stimulated gels initially softened and then recovered their stiffness corresponding to extensive cell network and collagen production. Second, we demonstrated in situ measurement of compressive stiffening of MSC-seeded PEG-NB gels cultured statically under osteogenic conditions, corresponding to increased mineralization and cellularization. This measurement technique can be generalized to other relevant bioreactor and organ-on-a-chip platforms to facilitate online, non-invasive, and high-throughput functional analysis, and to provide insights into the dynamics of engineered tissue development that are otherwise not available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app