JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DUOX2-mediated production of reactive oxygen species induces epithelial mesenchymal transition in 5-fluorouracil resistant human colon cancer cells.

Redox Biology 2018 July
The therapeutic benefits offered by 5-fluorouracil (5-FU) are limited because of the acquisition of drug resistance, the main cause of treatment failure and metastasis. The ability of the cancer cells to undergo epithelial-mesenchymal transition (EMT) contributes significantly to cancer metastatic potential and chemo-resistance. However, the underlying molecular mechanisms of 5-FU-resistance have remained elusive. Here, we show that reactive oxygen species (ROS), produced by dual oxidase 2 (DUOX2), promote 5-FU-induced EMT. First, we showed that 5-FU-resistant SNUC5 colon cancer cells (SNUC5/FUR cells) undergo EMT by analyzing the expression of EMT markers such as N-cadherin, vimentin and E-cadherin. In addition, we found that the resistant cells expressed higher levels of Snail, Slug, Twist and Zeb1, which are all critical EMT regulators and had enhanced migratory and invasive capabilities. Furthermore, SNUC5/FUR cells had increased level of DUOX2, resulting in increased ROS level. This effect was due to the enhanced binding of the ten eleven translocation 1 (TET1) demethylase to the DUOX2 promoter in the SNUC5/FUR cells. Importantly, silencing of TET1 reversed the effects of 5-FU on the cells. Finally, the antioxidant N-acetylcysteine attenuated the effects of 5-FU on EMT and metastasis. Our study demonstrates the existence of a TET1/DUOX2/ROS/EMT axis that could play a role in colon cancer chemo-resistance and the aggressiveness of this cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app