Add like
Add dislike
Add to saved papers

High-Throughput In-Use and Stress Size Stability Screening of Protein Therapeutics Using Algorithm-Driven Dynamic Light Scattering.

Stability of therapeutic proteins (TPs) is a critical quality attribute that impacts both safety and efficacy of the drug. Size stability is routinely performed during and after biomanufacturing. Dynamic light scattering (DLS) is a commonly used technique to characterize hydrodynamic size of the TPs. Herein, we have developed a novel method to evaluate in-use and thermal stress stability of TPs using algorithm-driven high-throughput DLS. Five marketed TPs were tested under the guidance of customized algorithms. The TPs were evaluated at relevant temperature conditions as well as under dilution and thermal stress for size stability. We found that the TPs were stable under the in-use conditions tested; however, sample loss due to evaporation can lead to large protein aggregates. A combined assessment of autocorrelation function and photos of sample well could be useful in formulation screening. Dilution of TPs also has an impact on the hydrodynamic size. Thermal stress experiments showed the importance of using different data processing methods to access size distribution. Polydispersity index was useful in evaluating sample heterogeneity. Herein, we show that algorithm-driven high-throughput DLS can provide additional supportive information during and after biomanufacturing and the potential to be used in a quality control environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app