Add like
Add dislike
Add to saved papers

Edge modes of scattering chains with aperiodic order.

Optics Letters 2018 May 2
We study the scattering resonances of one-dimensional deterministic aperiodic chains of electric dipoles using the vectorial Green's matrix method, which accounts for both short- and long-range electromagnetic interactions in open scattering systems. We discover the existence of edge-localized scattering states within fractal energy gaps with characteristic topological band structures. Notably, we report and characterize edge-localized modes in the classical wave analogues of the Su-Schrieffer-Heeger (SSH) dimer model, quasiperiodic Harper and Fibonacci crystals, as well as in more complex Thue-Morse aperiodic systems. Our study demonstrates that topological edge-modes with characteristic power-law envelope appear in open aperiodic systems and coexist with traditional exponentially localized ones. Our results extend the concept of topological states to the scattering resonances of complex open systems with aperiodic order, thus providing an important step towards the predictive design of topological optical metamaterials and devices beyond tight-binding models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app