Add like
Add dislike
Add to saved papers

3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser.

Applied Optics 2018 April 2
We test an erbium-doped fiber femtosecond laser for its potential as a light source for a coherence scanning interferometer for large field-of-view profiling of rough silicon carbide (SiC) surfaces. This infrared fiber pulse laser is able to provide a relatively long temporal coherence length of ∼30   μm to be appropriate for coherence scanning of rough surfaces. At the same time, it offers a high degree of spatial coherence comparable to that of a monochromatic continuous wave laser to achieve a large measurement field of view. In addition, the highly maintained linear polarization of the pulse laser source permits overcoming the low specular reflectance of rough SiC surfaces by polarization-based optical power splitting control between the reference and measurement arms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app