Add like
Add dislike
Add to saved papers

Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study.

Poly-ε-caprolactone (PCL) based medical devices are increasingly produced and thus, their presence in the environment is likely to increase. The present study analysed the biodegradation of PCL electro-spun scaffolds (alone) and PCL electro-spun scaffolds coated with human recombinant (hR) collagen and Bovine Achilles tendon (BAT) collagen in sewage sludge and in soil. Additionally, an eco-toxicological test with the model organism Enchytraeus crypticus was performed to assess environmental hazard of the produced materials in soils. The electro-spun scaffolds were exposed to activated sludge and three different soils for various time periods (0-7-14-21-28-56-180 days); subsequently the degradation was determined by weight loss and microscopical analysis. Although no toxicity occurred in terms of Enchytraeus crypticus reproduction, our data indicate that biodegradation was dependent on the coating of the material and exposure condition. Further, only partial PCL decomposition was possible in sewage treatment plants. Collectively, these data indicate that electro-spun PCL scaffolds are transferred to amended soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app