Add like
Add dislike
Add to saved papers

Poly(N-isopropylacrylamide) microgel-based etalons for the label-free quantitation of estradiol-17β in aqueous solutions and milk samples.

A novel estradiol-17β (E2) biosensor was constructed from poly(N-isopropylacrylamide) (pNIPAm) microgel-based etalons by modification of their outermost Au layer with an E2 binding 75-mer DNA aptamer. When E2 is not present in the solution, the aptamer forms a loose/linear structure that allows ions to pass through and into the microgel layer. The ions can change the solvation state of the microgels, which changes the optical properties of the etalon. When E2 is present in the solution, the aptamer binds the E2 and undergoes a conformational change to a form that can block the diffusion of salt ions into the microgel layer. This blocking decreases the response of the device to salt exposure, which can be related to the concentration of E2 in solution. Using this approach, E2 sensor showed a dynamic range of 0.9-200 pg/mL with a calculated detection limit of 0.9 pg/mL (3.2 pM) E2, and the lowest measured concentration of E2 is 5.0 pg/mL. This sensor also showed low cross reactivity with progesterone, a similar steroid hormone. Moreover, this sensor could be regenerated five times without losing its sensitivity. Finally, we demonstrated that the sensor could also be used to quantify E2 in commercial skim and 2% milk, as well as farm milk directly without any pre-treatment. The successful quantitation of E2 in unprocessed milk demonstrates its potential use as a "cow-side" testing device for the dairy industry. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app