Add like
Add dislike
Add to saved papers

New Experimental Models of Retinal Degeneration for Screening Molecular Photochromic Ion Channel Blockers.

Acta Naturae 2018 January
Application of molecular photochromic ion channel blockers to recover the visual function of a degenerated retina is one of the promising trends in photopharmacology. To this day, several photochromic azobenzene-based compounds have been proposed and their functionality has been demonstrated on cell lines and knockout mouse models. Further advance necessitates testing of the physiological activity of a great number of new compounds. The goal of this study is to propose animal models of photoreceptor degeneration that are easier to obtain than knockout mouse models but include the main features required for testing the physiological activity of molecular photoswitches. Two amphibian-based models were proposed. The first model was obtained by mechanical deletion of the photoreceptor outer segments. The second model was obtained by intraocular injection of tunicamycin to induce the degeneration of rods and cones. To test our models, we used 2-[(4-{(E)-[4-(acryloylaminophenyl]diazenyl}phenyl)amino]-N,N,N-triethyl-2-oxoethanammonium chloride (AAQ), one of the compounds that have been studied in other physiological models. The electroretinograms recorded from our models before and after AAQ treatment are in agreement with the results obtained on knockout mouse models and reported in other studies. Hence, the proposed models can be used for primary screening of molecular photochromic ion channel blockers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app