Add like
Add dislike
Add to saved papers

Does Vertical Ground Reaction Force of the Hip, Knee, and Ankle Joints Change in Patients with Adolescent Idiopathic Scoliosis after Spinal Fusion?

Study Design: Comparative cross-sectional study.

Purpose: We measured the vertical ground reaction force (vGRF) of the hip, knee, and ankle joints during normal gait in normal patients, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle <40° and in AIS patients with spinal fusion. We aimed to investigate whether vGRF in the aforementioned joints is altered in these three groups of patients.

Overview of Literature: vGRF of the lower limb joints may be altered in these groups of patients. Although it is known that excessive force in the joints may induce early arthritis, there is limited relevant information in the literatures.

Methods: We measured vGRF of the hip, knee, and ankle joints during heel strike, early stance, mid stance, and toe-off phases in normal subjects (group 1, n=14), AIS patients with Cobb angle <40° (group 2, n=14), and AIS patients with spinal fusion (group 3, n=13) using a gait analysis platform. Fifteen auto-reflective tracking markers were attached to standard anatomical landmarks in both the lower limbs. The captured motion images were used to define the orientations of the body segments and force exerted on the force plate using computer software. Statistical analysis was performed using independent t-test and analysis of variance to examine differences between the right and left sides as well as those among the different subject groups.

Results: The measurements during the four gait phases in all the groups did not show any significant difference ( p >0.05). In addition, no significant difference was found in the vGRF measurements of all the joints among the three groups ( p >0.05).

Conclusions: A Cobb angle <40° and spinal fusion did not significantly create imbalance or alter vGRF of the lower limb joints in AIS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app