Add like
Add dislike
Add to saved papers

Evaluation of Lumbar Intervertebral Disc Degeneration Using T1ρ and T2 Magnetic Resonance Imaging in a Rabbit Disc Injury Model.

Study Design: An in vivo histologic and magnetic resonance imaging (MRI) study of lumbar intervertebral disc (IVD) degeneration was conducted.

Purpose: To clarify the sensitivity and efficacy of T1ρ/T2 mapping for IVD degeneration, the correlation between T1ρ/T2 mapping and degenerative grades and histological findings in the lumbar IVD were investigated.

Overview of Literature: The early signs of IVD degeneration are proteoglycan loss, dehydration, and collagen degradation. Recently, several quantitative MRI techniques have been developed; T2 mapping can be used to evaluate hydration and collagen fiber integrity within cartilaginous tissue, and T1ρ mapping can be used to evaluate hydration and proteoglycan content.

Methods: Using New Zealand White rabbits, annular punctures of the IVD were made 10 times at L2/3, 5 times at L3/4, and one time at L4/5 using an 18-gauge needle (n=6) or a 21-gauge needle (n=6). At 4 and 8 weeks post-surgery, MRI was performed including T1ρ and T2 mapping. The degree of IVD degeneration was macroscopically assessed using the Thompson grading system. All specimens were cut for hematoxylin and eosin, safranin-O, and toluidine blue staining.

Results: Disc degeneration became more severe as the number of punctures increased and when the larger needle was used. T1ρ and T2 values were significantly different between grade 1 and grade 3 IVDs, grade 1 and grade 4 IVDs, grade 2 and grade 3 IVDs, and grade 2 and grade 4 IVDs ( p <0.05). There was a significant difference between grade 1 and grade 2 IVDs only in terms of T1ρ values ( p <0.05).

Conclusions: T1ρ and T2 quantitative MRI could detect these small differences. Our results suggest that T1ρ and T2 mapping are sensitive to degenerative changes of lumbar IVDs and that T1ρ mapping can be used as a clinical tool to identify early IVD degeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app