JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Characterization of the collagen microstructural organization of human cervical tissue.

Reproduction 2018 July
The cervix shortens and softens as its collagen microstructure remodels in preparation for birth. Altered cervical tissue collagen microstructure can contribute to a mechanically weak cervix and premature cervical dilation and delivery. To investigate the local microstructural changes associated with anatomic location and pregnancy, we used second-harmonic generation microscopy to quantify the orientation and spatial distribution of collagen throughout cervical tissue from 4 pregnant and 14 non-pregnant women. Across patients, the alignment and concentration of collagen within the cervix was more variable near the internal os and less variable near the external os. Across anatomic locations, the spatial distribution of collagen within a radial zone adjacent to the inner canal of the cervix was more homogeneous than that of a region comprising the middle and outer radial zones. Two regions with different collagen distribution characteristics were found. The anterior and posterior sections in the outer radial zone were characterized by greater spatial heterogeneity of collagen than that of the rest of the sections. Our findings suggest that the microstructural alignment and distribution of collagen varies with anatomic location within the human cervix. These observed differences in collagen microstructural alignment may reflect local anatomic differences in cervical mechanical loading and function. Our study deepens the understanding of specific microstructural cervical changes in pregnancy and informs investigations of potential mechanisms for normal and premature cervical remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app