Add like
Add dislike
Add to saved papers

Pulmonary hemodynamic effects and pulmonary arterial compliance during hypovolemic shock and reinfusion with human relaxin-2 (serelaxin) treatment in a sheep model.

BACKGROUND: Previous studies on the recombinant form of human relaxin-2 (serelaxin) have shown a decrease of pulmonary hemodynamics after serelaxin injection. Currently, the effect of serelaxin treatment during hypovolemia in a large animal model remains mostly unknown.

METHODS: 12 sheep were randomly assigned to a sham or serelaxin (30μg/kg serelaxin) group and underwent right heart catheterization. 50% of the estimated total blood volume were removed to induce hypovolemia, and subsequently retransfused 20 min later (reinfusion). Blood gases, heart rate, peripheral and pulmonary arterial oxygen saturation, systolic, diastolic and mean values of both pulmonary artery pressure (PAP) and pulmonary capillary wedge pressure (PCW) were measured. Cardiac output (CO), pulmonary vascular resistance (PVR), pulmonary arterial compliance (PAcompl) and systemic vascular resistance (SVR) were calculated.

RESULTS: Hypovolemia and shock led to a similar decrease of PAP and PCW in both groups (p≤0.001). CO, SV and PAcompl decreased only in the control group (p≤0.05) and remained higher in the serelaxin-treated group. The results of this study suggest that serelaxin treatment did not negatively influence hemodynamic parameters during hypovolemic shock.

CONCLUSION: The main conclusion of this study is that cardiopulmonary adaption mechanisms are not critically altered by serelaxin administration during severe hypovolemia and retransfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app