Add like
Add dislike
Add to saved papers

Grifolic acid causes osteosarcoma cell death in vitro and in tumor-bearing mice.

Grifolic acid is a natural compound isolated from the fungus Albatrellus confluens. In the present study, we assessed the effects of grifolic acid on human osteosarcoma cells. We found that grifolic acid dose- and time-dependently induced cell death in the U-2 OS, MG-63, Saos-2, and 143B human osteosarcoma cell lines. Grifolic acid decreased osteosarcoma cell mitochondrial membrane potential, ATP production, and cellular NADH levels, but did not impact mitochondrial membrane potential in isolated mitochondria from human osteosarcoma cells. Intratumoral injection of grifolic acid also promoted tumor cell death and prolonged survival in nude mice bearing human osteosarcoma xenografts. Grifolic acid had no obvious toxicity in mice, with no histological changes in liver, kidney, lung, or heart, and no changes in blood cell counts or levels of plasma total protein, alanine aminotransferase, or aspartate aminotransferase. These results show that grifolic acid induces osteosarcoma cell death by inhibiting NADH generation and ATP production without obvious toxicity. Intratumoral injection of grifolic acid may be a promising anti-osteosarcoma therapeutic option in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app