Add like
Add dislike
Add to saved papers

Valerian/Cascade mixture promotes sleep by increasing non-rapid eye movement (NREM) in rodent model.

The aim of this study was to investigate the beneficial effect of Valerian/Cascade mixture on sleeping in mammal models. In pentobarbital-induced sleep model, Valerian, Cascade, and Valerian/Cascade mixture significantly reduced the latency time for sleeping, and total sleeping time effectively increased in these sample groups compared with the control. Valerian/Cascade mixture increased sleep duration by 37%. The mixture significantly increased the non-rapid eye movement (NREM) sleep time by 53% compared with the control, while REM sleeping time was decreased by 33% with Valerian/Cascade mixture, in Electroencephalography (EEG) analysis, resulting in the increase of total sleep time and the decrease of awakening. This sleep-promoting effect was obvious in caffeine-induced awakening model; Valerian, Cascade, and the mixture significantly enhanced NREM and total sleep time, which were reduced by caffeine. Caffeine-induced increase of awakening was effectively deceased to the normal level by these three samples. In particular, delta wave responsible for deep sleep in NREM was greatly increased by the mixture in both normal and caffeine-induced awake models. This sleep-promoting effect of Valerian/Cascade mixture was shown to be due to the upregulation of gamma-aminobutyric acid A receptor (GABAA R). Valerian/Cascade mixture showed 91% binding capacity to GABAA -BZD receptor. Two compounds, Valerenic acid and Xanthohumol, were shown to significantly contribute to the binding activity of Valerian/Cascade mixture on the GABA receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app