Add like
Add dislike
Add to saved papers

Dual functions of a 4-hydroxyphenylpyruvate dioxygenase for Vibrio splendidus survival and infection.

Vibrio splendidus is a well-documented pathogenic bacterium that can trigger different diseases, including skin ulcer syndrome in Apostichopus japonicus. In our previous study, a gene named Vshppd encoding a 4-hydroxyphenylpyruvate dioxygenase homologue was cloned from pathogenic V. splendidus, and validated to be responsible for the haemolysis activities of V. splendidus. In this study, Vshppd was determined to participate in the catabolism of tyrosine and promote pyomelanin production in Escherichia coli BL21 (DE3) harboring Vshppd. The purified melanin pigment displayed obvious antimicrobial activity against E. coli and Micrococcus luteus and protective effect on V. splendidus under ultraviolet irradiation. As an important virulence factor, Vshppd was further determined to be cytotoxic to the coelomocyte of A. japonicus and cell viability decreased to approximately 68%, 77%, 54% and 44% when 50, 60, 80 and 100 μL of purified rVshppd was present, respectively. To better understand the potential effect of Vshppd mediated oxidative stress, we injceted A. japonicus with the rVshppd, which showed significantly stimulatory effects on the expression of oxidative stress related genes catalase (cat), glutathione S-transferase (gst), glutathione peroxidase (gpx), heat shock protein 70 (hsp70) of A. japonicus. At 48 h, the expression level of cytochrome P450 (cyp450) was down-regulated compared with that treated with BSA. It was suggested that Vshppd exhibited cytotoxicity via altering the oxidative stress. Our result indicated that Vshppd was not only involved in the self-protection, but also contributed to the pathogenesis of V. splendidus by modulating the oxidative stress imbalance in A. japonicus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app