Add like
Add dislike
Add to saved papers

A Simulation model for estimating methane oxidation and emission from landfill cover soils.

Quantification of methane (CH4 ) oxidation and emission from landfill cover soils is important for evaluating measures to mitigate anthropogenic greenhouse gas emissions. In this study, a model that combines the multicomponent diffusive equation and Darcy's law, coupled with the dual Monod kinetic equation, was established to simulate CH4 transport, oxidation and emission in landfill cover soils. Sensitivity analysis was performed to illustrate the influence of model parameters on CH4 transport, oxidation and emission. The model was then applied to predict CH4 emissions from several column experiments. The results of the sensitivity analysis showed that a high CH4 oxidation rate can be obtained with a high Vmax of cover soil, even for a low cover soil thickness, and that oxidation efficiency is constant when the thickness of the cover soil becomes greater than a threshold value. The simulated results fitted well with the measured values, confirming that the new model provides a reliable method for estimating CH4 emissions from landfills.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app