Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Assessing Lysosomal Alkalinization in the Intestine of Live Caenorhabditis elegans.

The nematode Caenorhabditis elegans (C. elegans) is a model system that is widely used to study longevity and developmental pathways. Such studies are facilitated by the transparency of the animal, the ability to do forward and reverse genetic assays, the relative ease of generating fluorescently labeled proteins, and the use of fluorescent dyes that can either be microinjected into the early embryo or incorporated into its food (E. coli strain OP50) to label cellular organelles (e.g. 9-diethylamino-5H-benzo(a)phenoxazine-5-one and (3-{2-[(1H,1'H-2,2'-bipyrrol-5-yl-kappaN(1))methylidene]-2H-pyrrol-5-yl-kappaN}-N-[2-(dimethylamino)ethyl]propanamidato)(difluoro)boron). Here, we present the use of a fluorescent pH-sensitive dye that stains intestinal lysosomes, providing a visual readout of dynamic, physiological changes in lysosomal acidity in live worms. This protocol does not measure lysosomal pH, but rather aims to establish a reliable method of assessing physiological relevant variations in lysosomal acidity. cDCFDA is a cell-permeant compound that is converted to the fluorescent fluorophore 5-(and-6)-carboxy-2',7'-dichlorofluorescein (cDCF) upon hydrolysis by intracellular esterases. Protonation inside lysosomes traps cDCF in these organelles, where it accumulates. Due to its low pKa of 4.8, this dye has been used as a pH sensor in yeast. Here we describe the use of cDCFDA as a food supplement to assess the acidity of intestinal lysosomes in C. elegans. This technique allows for the detection of alkalinizing lysosomes in live animals, and has a broad range of experimental applications including studies on aging, autophagy, and lysosomal biogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app